

GEOMETRICS, INC.

45 лет опыта в производстве геофизического оборудования

San Jose, California USA

Douglas Groom, Director of Geoelectrical Products

Geode EM3D

Новый геофизический комплекс для CSAMT съемок высокого разрешения (метод магнитотеллурических измерений в звуковом диапазоне частот с искусственным источником) Minex Central Asia, April 2014 Astana, Kazakhstan

Что стоит за названием Geode EM3D

- Возможность установки до 40 6-канальных ЭМ приемников с общим количеством каналов до 240
- Каждый приемник имеет до 6 каналов измерения геоэлектрических характеристик (E-field) и до 3 каналов измерения магнитного поля (H-field)
- Двойной металлический корпус.
- Низкие помехи на входе 10 nV/rtHz
- Низкие искажения на входе
- Автоматическая калибровка в поле
- Автоматическое измерение сопротивления контакта в поле
- Многое другое

Главное

- Синхронизированные измерения по электрическим и магнитным каналам методами CSAMT, AMT и другими
- Синхронизация с данными GPS
- Прочная аппаратура
- Надежная схема расстановки приемников
- В основе деятельности компании лежит 45-летний опыт в производстве геофизического оборудования

Сеть Geode EM3D на 24 канала. 20 электрических каналов и 4 магнитных канала

GEOMETRICS Geode EM3D Receiver network node sensor Receiver network node sensor with electric dipole only setup with electric dipole only setup Effeld electric dipole only Master network node with both E-field dipoles and H-field magnetic colls.

Преимущества и причины использовать Geode EM3D

- Получение баз 3-D данных по плотной сети для всестороннего изучения проектной площади
- Быстрый сбор данных с синхронизацией работы каждого источника с данными GPS по всем каналам
- Гибкая схема расстановки приемников магнитного канала (H-field), позволяющая достигать максимального разрешения с минимальными затратами
- Возможность использования от 6 до 240 каналов измерений
- Измерение полного тензора с использованием двух осей поляризации источника
- Повышение качества данных благодаря автоматическому измерению сопротивления контакта
- Повышение точности за счет калибровки в поле
- В будущем будут доступны модули для методов **AM**T, ВП и измерения сопротивлений

Приемник Geode EM3D

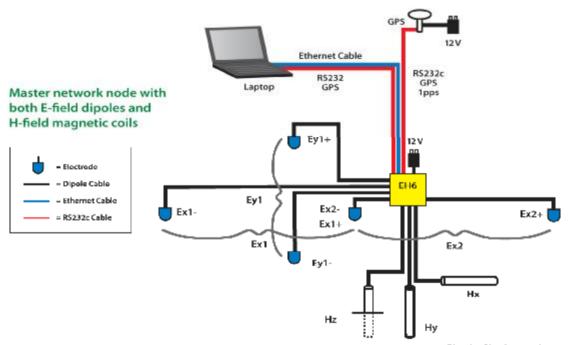


Fig. 1- Single receiver node with 6 channels

Одновременное получение ЭМ данных высокого разрешения по сгущенной сети с использованием значительного количества пунктов измерения

- Традиционное оборудование для метода CSAMT использует только одну расстановку приемников.
- К примеру, для 50 измерений генератор должен запускаться 50 раз и 50 раз должен переустанавливаться приемник. Обычно требуется от 30 минут до часа работы источника для измерений по каждому приемнику, что означает и 50 часов работы для 50 измерений без учета времени установки.
- Аппаратура Geode EM3D позволяет использовать одну расстановку всех приемников и один генератор обеспечивает одновременное проведение 50 измерений. Требуется только от 30 до 60 минут для использования всех 50 приемников.

Ориентировка и выравнивание по горизонтали петель магнитного приемника может занимать значительное время при установке.

Возможность комбинировать использование петель магнитного канала - H-field

- Экономия времени: для традиционных систем CSAMT требуется закапывание петель для каждого измерения и их откапывание для установки в другом месте. Сеть Geode EM3D позволяет использовать петли магнитного канала одного приемника для измерений другими приемниками и, таким образом, требуется меньшее количество установок с закапыванием.
- Повышение эффективности: оператор может выбирать оптимальное количество магнитных петель для съемки. К примеру, магнитные измерения (H-field) могут проводиться для каждых двух измерений по злектрическому каналу (E-field) или, в зависимости от спецификаций съемки, могут проводиться только шесть, десять или более измерений по электрическим каналам.
- Повышение качества данных: одновременное измерение ортогональных составляющих магнитного поля (Ну и Нх) разными приемниками в разных точках позволяет иметь локальные опорные данные.

Большой выбор схем расстановки

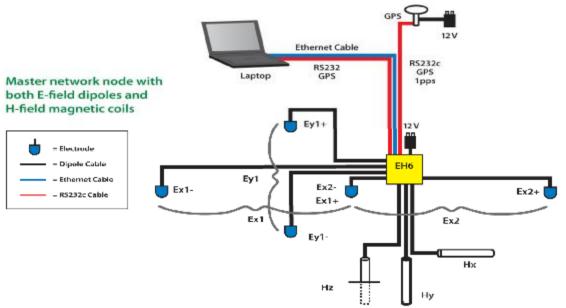
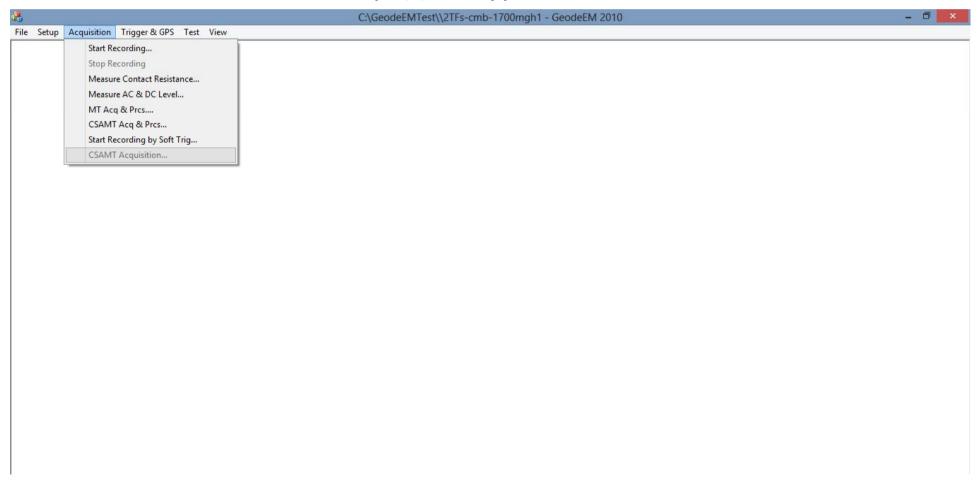


Fig. 1 Single receiver node with 6 channels

Receiver notionals incide with E-first described finds and incidence of the first described inciden

Легко задаваемый масштаб измерений: использование от одного 6-канального приемника до 40 приемников с измерениями по 240 каналам


- Широкий выбор вариантов установки. Каждый приемник может использовать любую комбинацию электрических и магнитных каналов измерения (Е и Н):
- 3E/3H
- 4E/2H
- 5E/1H
- 6E

Полевая установка и параметры каналов. Автоматическое измерение сопротивления контакта для каждой приемной петли (E-field)

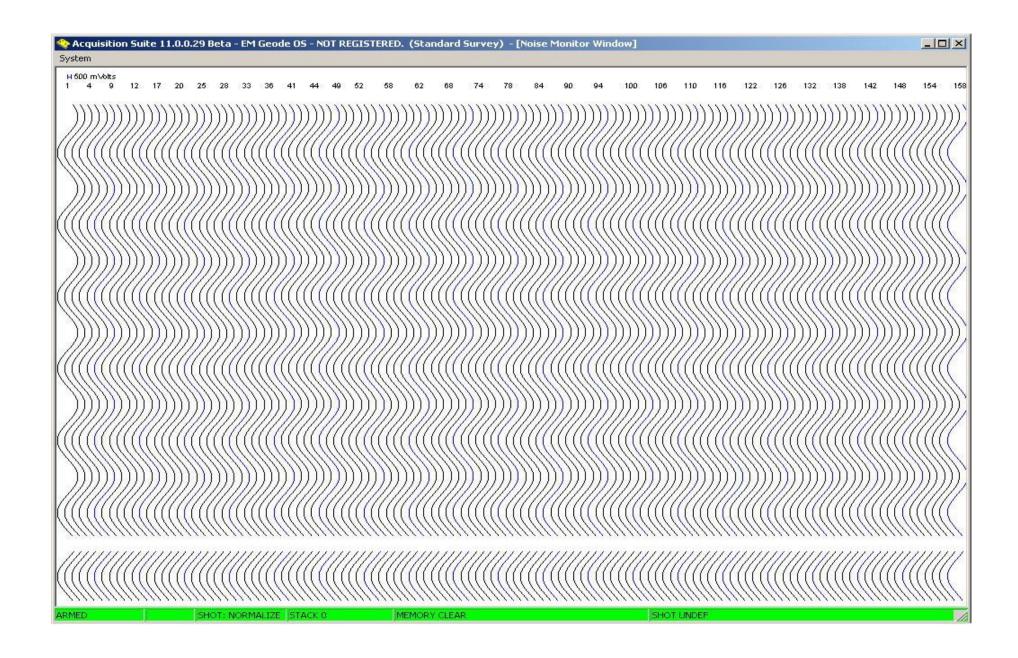
	itch I	Name:	BLU	E_PATCH		Roll Patch						ОК						
Array Type: Tensor					-	Line Frequency:				50			Cancel					
Rolling Azimuth: 90 Rolling Distance: 1500					- 20	Current Tx:			Tx 1				Tx Layout					
						Segment Information:						Send Afe Word						
AFE Batch Settings							Seg No. Survey		_				Satrt Ea.	Dip	. Dipole L		h	•
		ГА	uto LP		☐ Auto G	ain	1		-	4	0.0		0.0	50.	0	0.0		
			_	1				3										•
-	LP:	1	_	HLP:			Geode Cor	nfigura	tion of	Segme	nt 1							
E Gain: H Gain:					-	Geode No. Geode 1 2		de ID.	ID. Configure			Ex Chan	Bat(Bat(v)		Cal. Status		
								3Ex1Ey2H ▼ 5Ex1Ey ▼			2	0.0	0.0		Unknown Unknown			
EHP: HHP: V					▼							3					0.0	
						3	3		3Ex1Ey2H ▼			2	2 0.0		Unknown		-	
						- I C-1				1	- 11			\Cal				7
h	anne	Into. c	of Segm	ent 1	Data Folder:	C:\			•••		Calibratio	n i	Folder: C:	(Cal			••••	┚
i	С	C	Nort	Easting	Len/Coil	Azim	Gain(dB)		Filter	В	ootstrap	-	IP Filter	D	Α	Res(S	
_	1	Ey1	50.0	0.0	50.0	90.0	0	▼ W	eak	T 0	N _	Į o	.01		0	2017	0	
_	2	Ex1	25.0	0.0	50.0	0.0	0	▼ W	eak	T 0	N _	J o	.01	0	0	1927	1	
	12	Ex2	75.0	0.0	50.0	0.0	0	▼ W	eak	T 0	N _	0	.01	-	0	2468	1	
	3	Hx1	50.0	0.0	G20k-10	0.0	0	▼ W	eak	_	FF <u></u>	0		0	0			
	5		50.0	0.0	G20k-10	90.0	0	▼ W	eak	T 0	FF] o	.01	0	0			
	+-	Hy1			50.0	90.0	0	▼ W	eak	T 0	N _	0	.01	4 -	0	1334	0	
	5	.,	175.0	0.0			0	▼ [w	eak	▼ 0	N	0	.01	0	0	1994	1	
	5	Ey2	175.0 125.0	0.0	50.0	0.0	U	_				1 _	.01	10	_			100000
	5 6 1	Ey2 Ex3			50.0	0.0	0	▼ w	eak	T 0	N 💌	10	.01	ll o	0	1782	2	
	5 6 1 2	Ey2 Ex3 Ex4	125.0	0.0			_	= "	eak eak		N Y	, ,	.01	-	0	1782 1270	1	

Меню сбора данных GeodEM2010 Обратите внимание на опции "Measure Contact Resistance" и "Measure AC & DC Level"

• Автоматически измеряются сопротивление контакта по всем каналам электродов и уровень помех AC и DC

GeoTech, Китай, Пекин

Знакомство китайских специалистов c Geode EM3D


120 – канальный комплекс из 20 приемников на выставочном стенде

Интерес к оборудованию на выставке

Данные проверочного сигнала по 120 каналам Geode EM3D

Улучшение результатов измерения полного тензора

• Традиционный метод CSAMT дает возможность расчета только скалярной величины импеданса (Ex/Hy). Система Geode EM3D, используя искусственный источник, позволяет проводить измерения полного тензора (Ex/Hy и Ey/Hx), используя несколько осей поляризации.

Полевые испытания Geode EM3D на участке, расположенном примерно в 100 км севернее Пекина

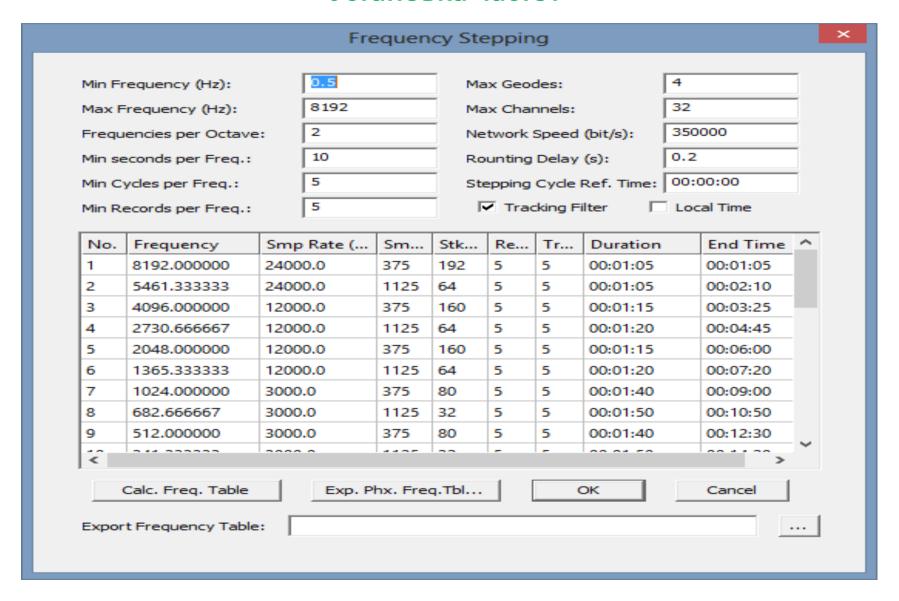
- Были использованы четыре сети с 20 каналами измерений каждая.
- Четыре магнитных канала (H-field)
- Шестнадцать электрических каналов (E-field)
- Четыре канала не задействованы

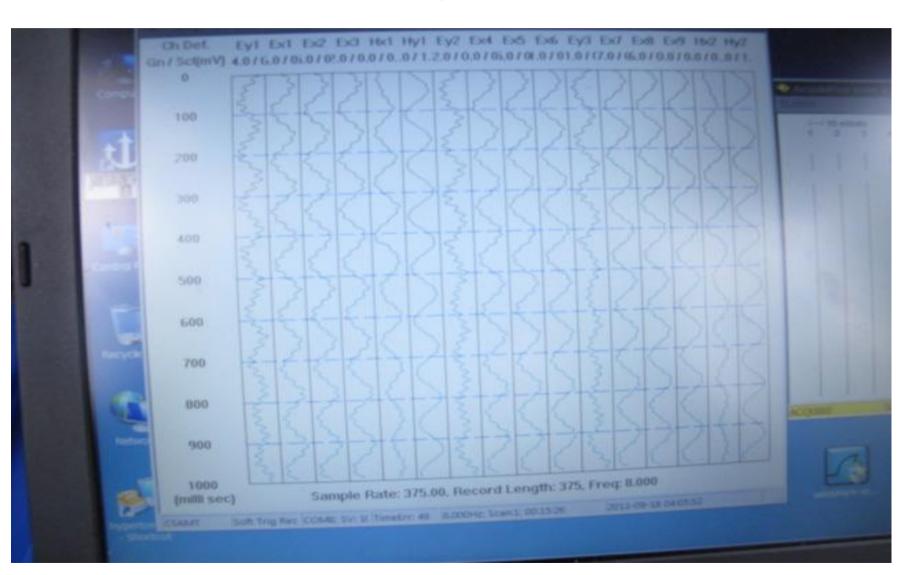
Генератор Phoenix T-3 Мощность 3 кВт

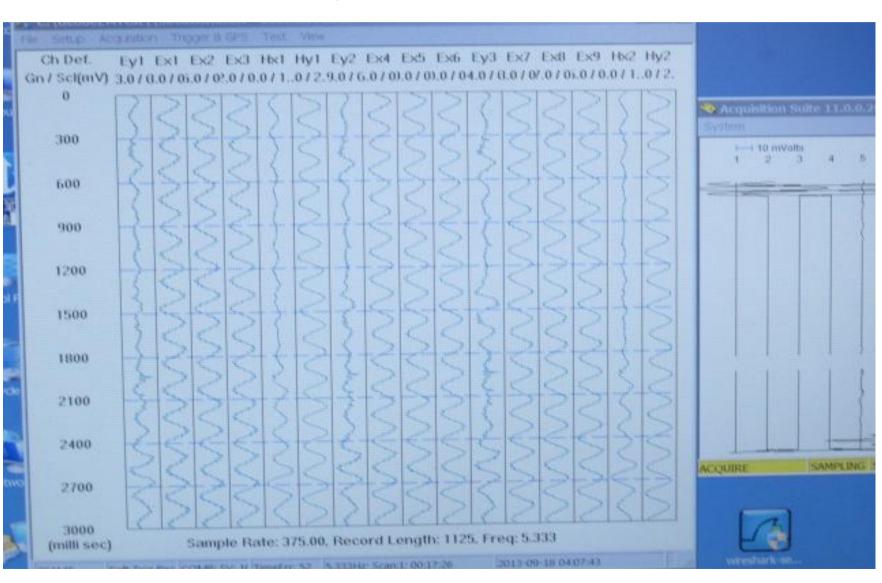
Источник + Блок управления + Генератор + Монитор

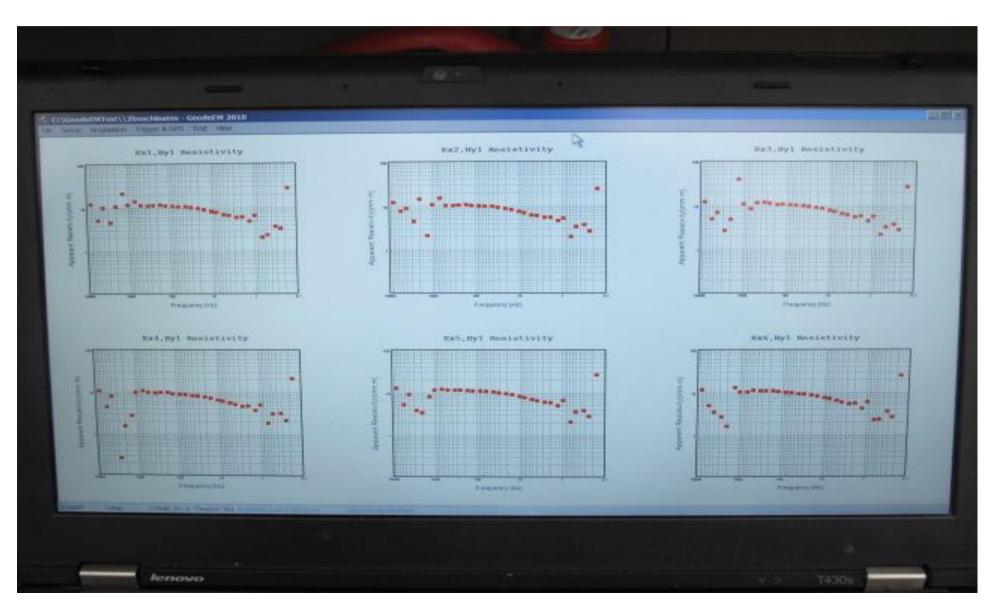
Установка петли источника

Заглубленная петля источника: металлические листы, электроды


Изготовленный в Китае комплекс: источник 30 кВт + блок управления + источник питания + соединительный блок + контрольный блок

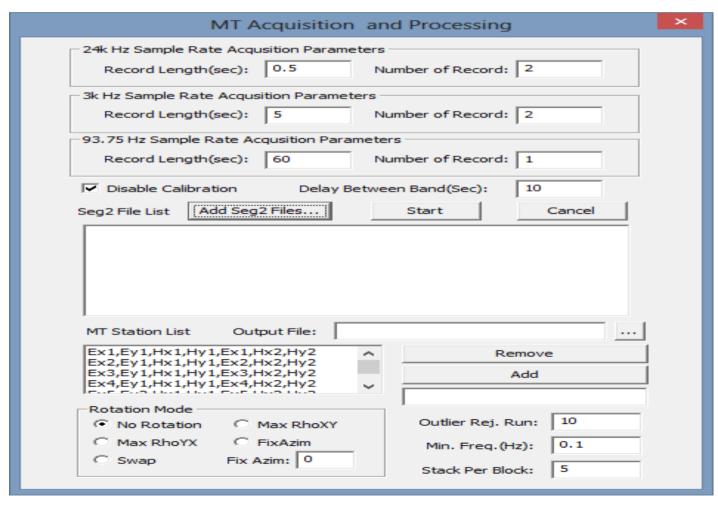

Два генератора мощностью 15 кВт для источника 30 кВт китайского производства


Установка частот

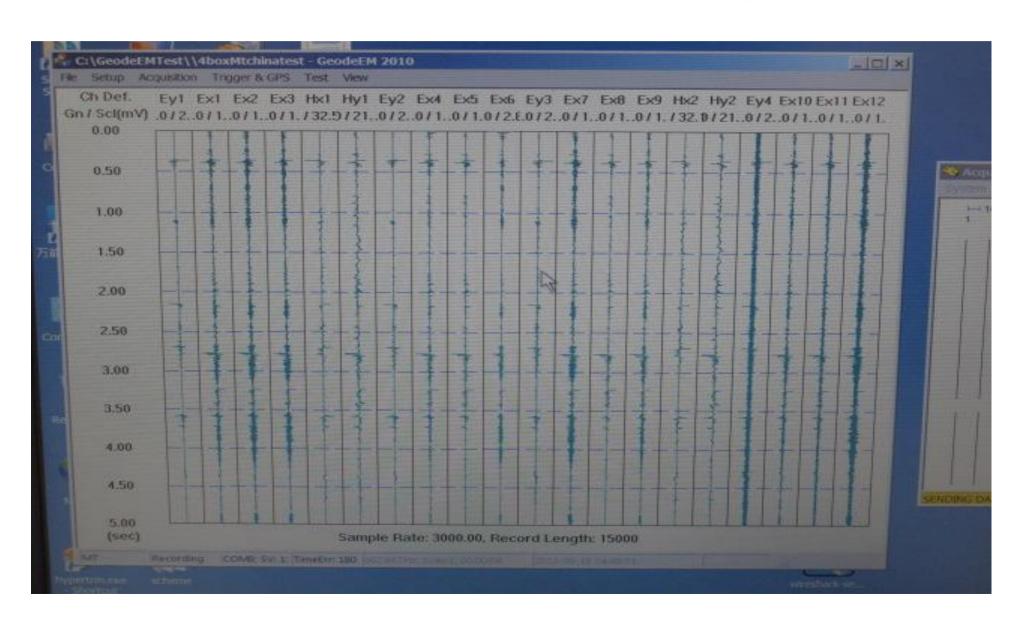

Полевые данные измерений CSAMT по 16 каналам на частоте 8 Гц. Источник (1.5 кВт) расположен на расстоянии 12.5 км

Полевые данные измерений CSAMT по 16 каналам на частоте 8 Гц. Источник находится на расстоянии 12.5 км

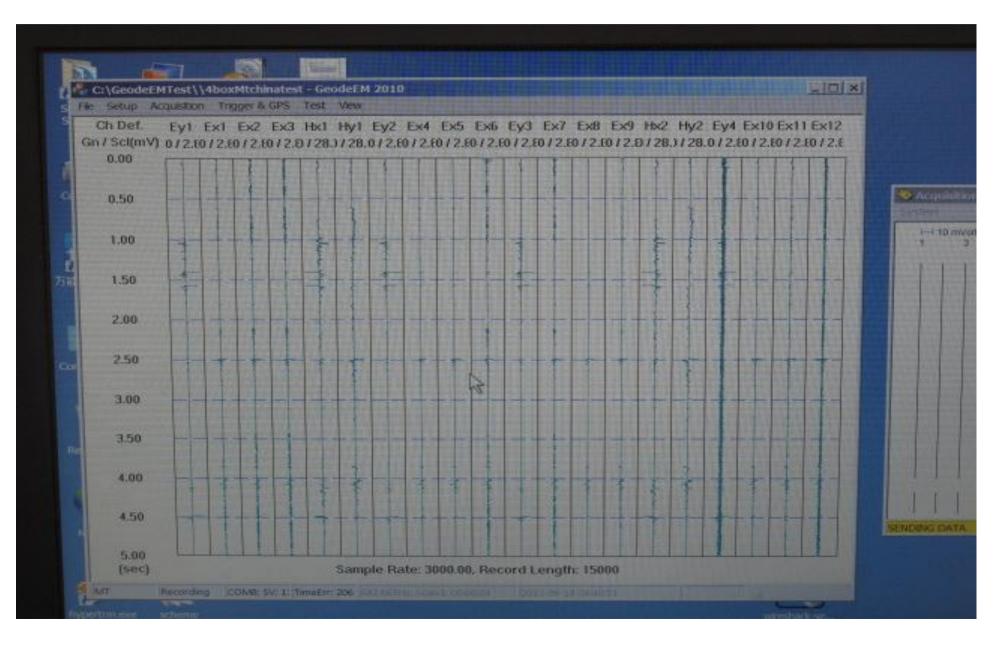
Графики импеданса в реальном времени по шести полевым измерениям

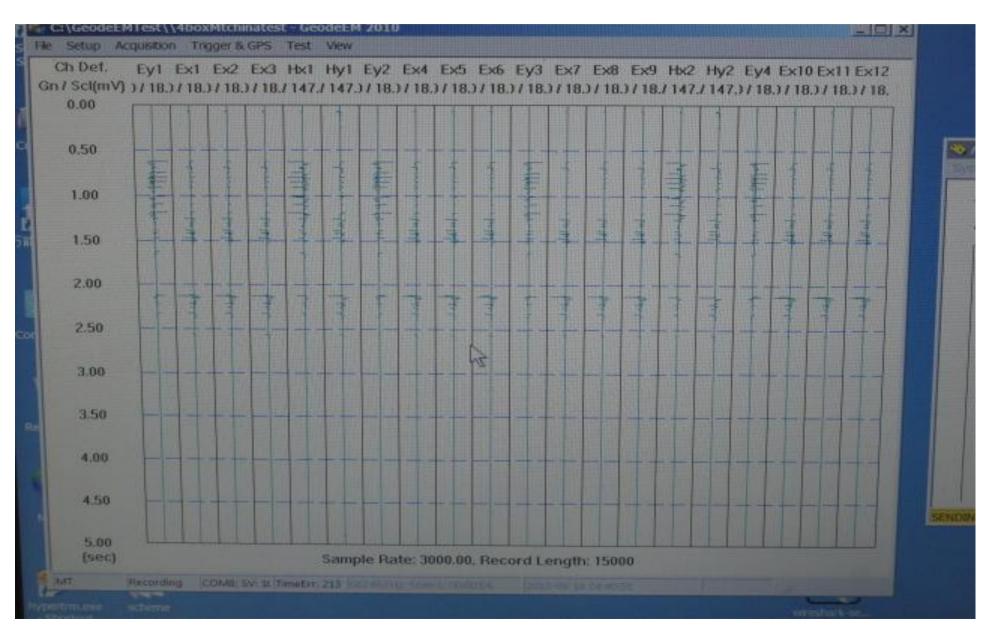


Методы CSAMT и AMT сегодня. Методы ВП, измерение сопротивлений и другие технологии в будущем


• Сегодня комплекс Geode EM3D используется для съемок методом CSAMT. В будущем будут доступны измерения методами AMT (естественное поле в диапазоне звуковых частот), ВП, измерение сопротивлений и другие методы измерения геоэлектрических параметров.

Установка параметров для AMT измерений. Определение тензора по семи каналам


• Измерение ортогональных составляющих Ex, Ey, Hx, Hy, Hz, Hx2 и Hy2 для получения локальных опорных данных


Данные АМТ в реальном времени (естественное поле без источника)

Данные АМТ

Данные АМТ

Обработка полевых данных в реальном времени

Приемник GEM3D с петлями, неполяризующимся электродом, кабелями электродов, аккумулятором, сетевым кабелем

Смотка 250-метровых сетевых кабелей по окончанию работ

Конфигурации системы

- 1. Один приемник
 - Один модуль GeodeEM для измерений AMT/CSAMT/IP в различных конфигурациях: 6E, 5E1H, 4E2H, 3E3H
- 2. "Стандартная " уменьшенная расстановка
 - 4 приемника EM3D образуют основную сеть с различными возможными вариантами измерений
- 3. "Максимальная" расстановка
 - 40 приемников GeodeEM : 240 каналов измерений.