

Руководство по настройке параметров системы Система сбора данных SCOUT mini с USB

Advanced Logic Technology sa

Bat A, Route de Niederpallen L-8506 Redange-sur-Attert Luxembourg

Телефон: +352 23 649 289 Факс: +352 23 649 364 Email : support@alt.lu Web : www.alt.lu

Mount Sopris Instruments Co., Inc.

4975 E. 41st Ave. Denver, CO 80216 USA

Телефон: +1 303 279 3211 Факс: +1 303 279 2730 Email : tech.support@mountsopris.com Web : www.mountsopris.com

АГТ Системс

РОССИЯ 125445, Москва, ул. Смольная 24а, офис 1420

Телефон/Факс: +7(495) 232-07-86 Email :sales@agtsys.ru, Web : www.agtsys.ru

Оглавление

1	BBE	дение	3
2	ОБЗ	ЗОР СИСТЕМЫ	3
	2.1 7	ехнические характеристики	3
3	КОН	ФИГУРАЦИЯ АППАРАТНОЙ ЧАСТИ	4
	3.1 Г	Тередняя панель – Схема разъемов – Компоновка ALT	4
	3.2 Г	Тередняя панель – Схема разъемов – Компоновка MSI	5
	3.3 (Составные части системы SCOUT	8
	3.3.1	Коммутационная панель	8
	3.3.2	Устройство ALT Modem	8
	3.3.3	JAZZ	8
	3.3.4	Интерфейс стойки	9
	3.4 Г	Толожения перемычек кодировщика глубины на интерфейсе стойки	9
	3.4.1	Доступ к интерфейсу стойки	10
	3.4.2	Конфигурация перемычек	11
	3.5 \$	SCOUT – Подготовка лебедки к работе	11
4	ПРИ	ІЛОЖЕНИЕ	13
	4.1 \$	SCOUT – Компоновка ALT – Обозначение разъемов	13
	4.2 \$	SCOUT – Компоновка MSI – Обозначение разъемов	13
	4.3 Г	Тоиск и устранение неисправностей	13

1 ВВЕДЕНИЕ

В основе системы сбора каротажных данных SCOUT – современная электронная схемотехника, позволяющая максимально использовать методы управления программными средствами. Аппаратное обеспечение состоит из самых современных электронных компонентов со встроенными системами, управляемыми посредством специально разработанной программы **LOGGER SUITE** с интерфейсом OC Windows.

Основные критерии системы:

- Программная платформа на базе Windows
- Прочный корпус для тяжелых условий, надежность, отказоустойчивость электроники
- Простой в использовании экранный графический пользовательский интерфейс панель управления – с функциями самодиагностики, настройки конфигурации системы посредством диалоговых окон. При этом от пользователя требуются минимальные технические знания.
- Модульная конструкция, облегчающая техническое обслуживание
- Высокоскоростное соединение с компьютером по USB
- Универсальная лебедка работает с коаксиальными, одно- и многожильными каротажными кабелями
- Высокоскоростная система телеметрии с автоматической подстройкой
- Универсальность кодировщика положение вала совместим с любым 12 В или 5 В кодировщиком положения вала, настраивается на любую комбинацию импульсов ролика / вала за один оборот
- Контроль натяжения каротажного кабеля. Адаптер натяжения совместим с любыми датчиками натяжения / тензорными датчиками.

2 ОБЗОР СИСТЕМЫ

Конфигурация передней панели системы SCOUT может быть изменена для использования стандартных соединений ALT (компоновка ALT) или стандартных соединений MSI (компоновка MSI).

2.1 Технические характеристики

Размеры (Ш х Д х В)	17 x 31,5 x 12,5 см (7 x 12,4 x 4,9 дюйма)
Bec	3,5 кг
Входное напряжение	Переменный 90 – 240 В, 50 – 60 Гц, совместим с преобразователем
Питание скважинного зонда	120 В / 500 мА
Подключение к ПК	Высокоскоростное, по USB
Каротажный кабель	Стандартный 1-, 4-, 7-жильный, и коаксиальный
Скважинные зонды/телеметрия	Скважинные зонды ALT и серия зондов ALT QL
Возможность модернизации	Обновление программного обеспечения пользователем
Программное обеспечение	Logger Suite версии 12.1, или более поздней

3 КОНФИГУРАЦИЯ АППАРАТНОЙ ЧАСТИ

3.1 Передняя панель – Схема разъемов – Компоновка ALT¹

Рисунок 3-1 Передняя панель SCOUT – Компоновка ALT

Mud Plug – PT07A8-2S			
Α	Mud Plug		
В	System Ground		

Wir	eline – PT07A12-10S
Α	Wireline1
В	Wireline2
С	Wireline3
D	Wireline4
Е	Wireline5
F	Wireline6
G	Wireline7
Н	nc
J	Wireline Armor
К	Wireline Armor

Tension – PT07A8-4S			
Α	Drive		
В	Input+		
С	Input -		
D	Ground		

USB –	PT07A12-10P
Α	V Bus
В	Data N
С	Data P
D	Ground
E	Shield
F	nc
G	nc
Н	nc
J	nc
К	nc

Depth – PT07A10-6S			
Α	Encoder A		
В	Encoder B		
С	Encoder A-		
D	Encoder B-		
E	Encoder GND 0V		
F	Encoder PWR V+		

POWI	ER – PT07A12-3P
Α	Live
В	Neutral
С	Earth

¹ В этой конфигурации системы SCOUT используется такая же схема подключения разъемов, что и в других системах сбора данных ALT (ABOX, BBOX, ALTLOGGER).

3.2 Передняя панель – Схема разъемов – Компоновка MSI²

Рисунок 3-2 Передняя панель SCOUT – Компоновка MSI

Win	ch – PT07A14-18S
Α	Wireline1
В	Wireline2
С	Wireline3
D	Wireline4
Е	Wireline Armor
F	Encoder PWR
G	Encoder A
Н	Encoder A-
J	Encoder B
К	Encoder B-
L	Encoder GND
М	Tension PWR
Ν	Tension + Signal
Ρ	Tension - Signal
R	Tension GND
S	Chassis GND
Т	Wireline 5
U	Wireline 6

Mud Plug – PT07A8-2S			
Α	Mud Plug		
В	System Ground		

POWER – PT07A12-3P			
Α	Live		
В	Neutral		
С	Earth		

USB – PT07A10-6S			
Α	V Bus		
В	Data N		
С	Data P		
D	Ground		
E	Shield		
F	nc		

² В этой конфигурации системы SCOUT используется такая же схема подключения разъемов, что и в системе MATRIX.

Система сбора данных SCOUT поддерживает использование различных типов каротажных кабелей: коаксиальные, с одним проводником, с несколькими проводниками.

Примеры стандартных кабельных наконечников Gearhart Owen: <u>Кабельный наконечник с одним проводником</u>

В Таблице указаны для справки базовые варианты подключения ALT:

Т0 – один проводн <u>ик</u>		
WL1	COM+	
Т1 – четыре прово <u>дника</u>		
WL1	COM+	
WL2	AUX1 (mud plug)	
WL3	COM-	
WL4	AUX2	
T2 – четыре проводника		
WL1	COM+	
WL2	COM+	
WL3	COM-	
WL4	COM-	
Т3 – с	емь проводников	
WL1	COM+	
WL2	COM+	
WL3	AUX1 (mud plug)	
WL4	COM-	
WL5	COM-	
WL6	AUX2	
WL7	nc	
Т5 – с	емь проводников	
WL1	COM+	
WL2	COM-	
WL3	AUX1 (mud plug)	
WL4	COM+	
WL5	COM-	
WL6	AUX2	
WL7	н/п	

ПРЕДУПРЕЖДЕНИЕ: Проверьте ваш кабельный разъем и кабель на целостность до подключения штекера кабеля к системе SCOUT

Примечание:

Передача сигналов по проводникам каротажного кабеля осуществляется под контролем устройства ALT MODEM, входящего в систему SCOUT. Устройство ALT MODEM конфигурирует и распределяет питающие линии, линии связи и вспомогательные линии, основываясь на схемах подключения верхней части зонда и кабельного разъема, выбранных пользователем в приложении Logger Suite.

3.3 Составные части системы SCOUT

3.3.1 Коммутационная плата

В состав системы SCOUT входят три адаптера, которые подключаются к коммутационной плате посредством разъемов DIN41712 Eurocard.

Contraction concerned
• •
С
BBOX_BACKPLANE2G

Рисунок 3-3 Интерфейс коммутационной платы

Коммутационная плата направляет основное питание переменного тока (MAIN AC) на интерфейс стойки и обеспечивает хорошую изоляцию порта USB.

На интерфейсе коммутационной платы размещен плавкий предохранитель номиналом 3,15 А – 240 В переменного тока, защищающий систему от скачков напряжения или короткого замыкания (Рисунок 3-3).

3.3.2 Устройство ALT MODEM

В стандартном исполнении ALT MODEM осуществляет управление скважинными зондами, используя протоколы телеметрии ALT standalone и ALT/MSI Quick Link.

Устройство ALT MODEM управляет всеми сигналами, которые передаются по каротажному кабелю.

Основные функции устройства ALT MODEM:

- Автоматическое управление и распределение питающих линий, линий связи и вспомогательных линий, основываясь на схемах подключения верхней части зонда и кабельного наконечника, выбранных пользователем в приложении Logger Suite.
- Автоматическая подстройка телеметрии для любых каротажных кабелей и использование процессов Equalizer и Train для оптимизации параметров телеметрии на длинных каротажных кабелях³.
- Обеспечение нескольких вариантов отображения (Analysis info и Scope) для проверки и точной настройки параметров телеметрии.

3.3.3 Jazz

Плата JAZZ является главным интерфейсом между компьютером пользователя и компонентами системы SCOUT. JAZZ выполняет следующие функции:

- Сбор, управление и оцифровка информации, поступающей от других адаптеров: ALT MODEM; интерфейс стойки (кодировщик глубины, датчик натяжения)
- Управление связью с компьютером по USB
- Управление потоком данных

³ Эти процессы применимы только в сочетании со скважинными инструментами ALT / MSI, в состав которых входит плата телеметрии QLMODEM-PSU.

3.3.4 Интерфейс стойки

Интерфейс стойки можно разделить на три отдельные части:

1. Блок питания

Блок питания обеспечивает:

- о 120 В постоянного тока по каротажному кабелю на скважинный зонд
- о +12 В на цифровую схему
- о +15 В и -15 В на аналоговую схему

2. Схема кодировщика глубины

Схема кодировщика глубины в интерфейсе стойки обеспечивает возможность работы с большинством импульсных кодировщиков.

Схема имеет четыре канала ввода, и требует не менее двух вводов прямоугольных импульсов, А и В, отличающихся по фазе на 90° для определения направления.

Благодаря кодировщику с четырехканальным выводом присутствуют также инвертированные А-, В-, что обеспечивает повышенную надежность подсчета глубины.

Поддерживаются устройства 5 В и 12 В.

Интерфейс стойки необходимо сконфигурировать таким образом, чтобы он соответствовал характеристикам вашего кодировщика глубины. Дополнительная информация в параграфе 3.4.

3. Схема измерения натяжения

Схема измерения натяжения в интерфейсе стойки поддерживает датчики натяжения трех типов:

- о Датчик натяжения с выходным сигналом 0-10 В
- о Датчик натяжения с выходным сигналом 0-20 мА
- о Тензометрический датчик

В стандартном исполнении система сбора данных SCOUT снабжается адаптером натяжения, рассчитанным на входной сигнал 0-10 В. По требованию, могут быть предложены другие конфигурации схемы измерения натяжения.

3.4 Положения перемычек кодировщика глубины в интерфейсе стойки

Плата интерфейса стойки по умолчанию сконфигурирована для кодировщика глубины BEI H20DB-5VDC, согласно представленной ниже таблице и Рисунку 3-4.

Перемычка	Функция	Положение
JP1	Инициирование измерения натяжения	Установлено
JP2, JP3, JP4, JP5	Опция Pull-up	Не установлено
JP6	Питание кодировщика глубины	Задано 5 В пост. тока
JP7	Выход кодировщика глубины и питание опции Pull-up	Задано 5 В пост. тока
JP8	Направление кодировщика глубины	Не установлено
JP9	Комплиментарные выводы кодировщика глубины	Не установлено

Примечание:

Прежде подключить к системе SCOUT тот или иной кодировщик глубины, рекомендуется согласовать его технические характеристики с производителем или поставщиком лебедки. Неправильная конфигурация перемычек может стать причиной выхода из строя кодировщика глубины.

Рисунок 3-4 Компоновка интерфейса стойки – Стандартная конфигурация перемычек

Если требуемая конфигурация кодировщика глубины отличается от конфигурации по умолчанию, пользователю придется добраться до платы интерфейсов стойки, для изменения положения перемычек кодировщика глубины.

3.4.1 Доступ к интерфейсу стойки

- 1- Отверните 4 винта на передней панели
- 2- Осторожно извлеките переднюю панель и электронные платы из модуля
- 3- Найдите интерфейс стойки, см. Рисунок 3-5

Рисунок 3-5 SCOUT (перевернуто) – Расположение интерфейса стойки

3.4.2 Конфигурация перемычек

Выберите конфигурацию положения перемычек, в соответствии с техническими характеристиками кодировщика глубины. Обратитесь к представленной ниже таблице.

Номер перемычки		
JP1	TENSION (Натяжение) – Всегда в таком положении	
JP2, JP3,	Установите перемычки в нужное положение для кодировщика глубины, требующего опции	
JP4, JP5	Pull-up	
JP6	Установите две перемычки блока питания кодировщика глубины +5 В или +12 В	
JP7	Установите перемычку кодировщика глубины с выводом +5 В или +12 В и питанием Pull-up	
JP8	Установите перемычку, изменяющую направление кодировщика глубины на	
	противоположное (это можно также сделать в ПО LoggerSuite)	
JP9	Установите перемычку для кодировщика глубины с комплиментарными выводами (4 провода	
	– фазы А, А [–] , В, В [–])	

Пример настройки конфигурации:

Кодировщик глубины 12 В постоянного тока, 4 провода (комплиментарные выводы), требуется опция Pull-up 12 В

Рисунок 3-6 Конфигурация кодировщика глубины 12 В – 4 провода с опцией Pull-ир 12 В

3.5 SCOUT – Подготовка лебедки к работе

На кожухе SCOUT имеются две монтажные шины, которые можно использовать для закрепления системы на лебедке MSI MX или MINI (Рисунок 3-7).

Рисунок 3-7 Монтажные шины системы SCOUT

На лебедке модели MINI система SCOUT крепится на двух металлических кронштейнах, путем совмещения монтажных штифтов с ответными отверстиями в нижней части кожуха. После этого надвиньте кожух на установочные штифты, оттянув кольцо стопорного штифта. После окончательной установки кожуха SCOUT отпустите кольцо стопорного штифта.

Такой же порядок действий применим к лебедкам модели МХ.

Рисунок 3-8 Установка системы SCOUT на лебедку MINI

4 ПРИЛОЖЕНИЕ

4.1 SCOUT – Компоновка ALT – Обозначение разъемов

Функция	Обозначение разъема на передней панели	Обозначение штекера
MUD PLUG	PT07A8-2S	PT06E8-2P(SR)
TENSION	PT07A8-4S	PT06E8-4P(SR)
DEPTH	PT07A10-6S	PT06E10-6P(SR)
WIRELINE	PT07A12-10S	PT06E12-10P(SR)
USB	PT07A12-10P	PT06E12-10S(SR)
POWER	PT07A12-3P	PT06E12-3S(SR)

4.2 SCOUT – Компоновка MSI – Обозначение разъемов

Функция	Обозначение разъема на передней панели	Обозначение штекера
MUD PLUG	PT07A8-2S	PT06E8-2P(SR)
WINCH	PT07A14-18S	PT06E14-18P(SR)
USB	PT07A10-6S	PT06E10-6P(SR)
POWER	PT07A12-3P	PT06E12-3S(SR)

4.3 ПОИСК И УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

Наблюдаемый факт	Что делать
Выключатель питания системы SCOUT	1. Проверьте входной источник переменного тока
находится в положении ON. Красный	(генератор, инвертор, электрическая сеть).
индикатор на передней панели системы	2. Проверьте целостность сетевого шнура.
SCOUT не светится. Питание не	3. Проверьте предохранитель интерфейса
подается на систему.	коммутационной платы – см. в параграфе 3.3.1 на стр. 9.
Система не измеряет глубину.	1. Проверьте положение перемычек на интерфейсе стойки.
	Убедитесь, что положение перемычек соответствует
	техническим требованиям к кодировщику глубины.
	2. Проверьте правильность подключения кодировщика
	глубины к системе SCOUT.
	3. Проверьте исправность кодировщика глубины с
	помощью внешнего источника питания и осциллографа.
Система не измеряет натяжение	1. Убедитесь, что конфигурация функции измерения
каротажного кабеля	натяжения SCOUT совместима с выходным сигналом
	датчика натяжения.
	2. Проверьте правильность подключения датчика
	натяжения к системе SCOUT.
	3. Проверьте исправность датчика натяжения.
Программа LOGGER всегда начинает	1. Проверьте кабель USB.
работу в режиме демо. Зеленый	2. Проверьте канал связи USB между ПК и системой
индикатор на передней панели системы	SCOUT.
SCOUT не светится.	3. Проверьте правильность установки драйверов USB в
	системе SCOUT. Драйверы USB должны быть видны на
	компьютерной странице Control Panel/System и
	Security/System/Devices. В случае необходимости
	переустановите драиверы USB.
На плате ЈАΖΖ не светится ни один	1. Проверьте состояние индикаторов (LED) на цифровом и
иноикатор.	аналоговом блоке питания. Возможная причина –
	неисправность олока питания.
Analysis into u Scope не отображаются в	1. Проверьте, светится ли зеленый индикатор на передней
оиалоговом окне « I elemetry and	панели SCOUT. Он должен мигать после установления
Equalizer».	телеметрической связи со скважинным прибором.
	2. Закроите программу LOGGER. Выключите и снова
	включите главныи выключатель питания системы
	SCOUT. Перезапустите программу LOGGER.