

Трехкомпонентный высокочувствительный короткопериодный сейсмограф Модель: UGL-3C

UGL-3C - это модернизированный трехкомпонентный высокочувствительный короткопериодный. Продукт может быть использован для микросейсмического мониторинга в режиме реального времени и в течение длительного времени. Преимуществами данного продукта являются встроенный высокочувствительный геофон 4,5 Гц, 25-30 дней автономной работы, 4G модель обладает возможностью дистанционной передачи данных в реальном времени, которая может действительно реализовать интеллектуальный сбор и мониторинг сейсмических данных в реальном времени.

UGL-3С широко используется в различных областях инженерной и геологической разведки таких как: водоснабжение, электроснабжение, дороги, железные дороги, мосты, городское строительство, транспорт, разведка подземных вод и ресурсов: нефть, уголь, метан угольных пластов, сланцевый газ, металлы и неметаллические минералы, мониторинг оползней в реальном времени, микросейсмический мониторинг в реальном времени и т.д.

Особенности:

- * Встроенный трехкомпонентный геофон высокой чувствительности 4,5 Гц
- *25-30 дней сверхдлительной работы в режиме реального времени 4G модель дистанционной передачи данных
- * Интеллектуальная автоматическая противоугонная сигнализация с функцией отслеживания движения после кражи, предотвращающая потерю инструментов
- * Функция дистанционного контроля включения\выключения
- * Внешние солнечные батареи, бесперебойное электроснабжение
- * Даже если источник пассивный, вы можете настроить триггер под активный источник.
- * На всей панели имеется только один порт, изделие компактно, а его размеры сравнимы с размером смартфонов, которыми мы пользуемся

Технические параметры:

1) Параметры геофонов:

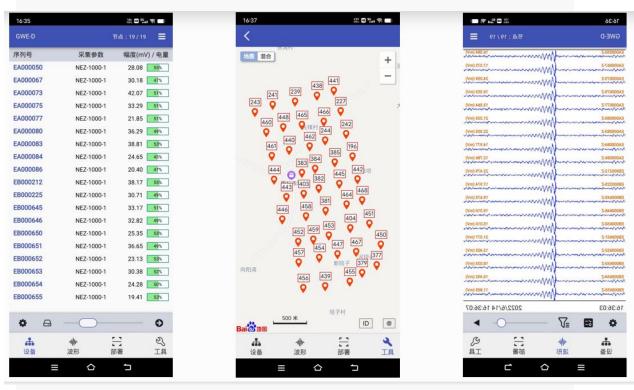
Собственная частота	4.5Hz
Чувствительность	190V/m/s

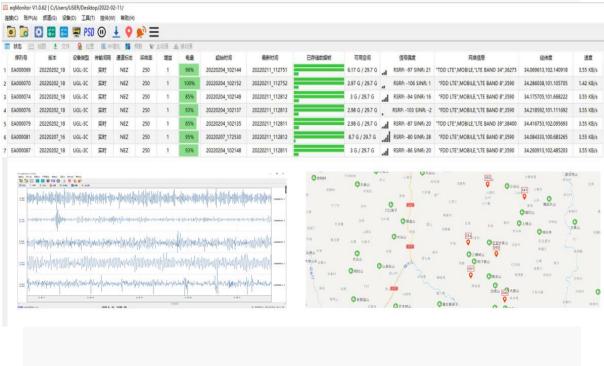
2) Физические параметры:

Размеры	φ129.3mm,H211.5mm 〔без конуса(ножки))
Bec	<2.2 kg(встроенный аккумулятор)
Водонепроницаемость	IP67
Рабочая температура	-40°C~85°C

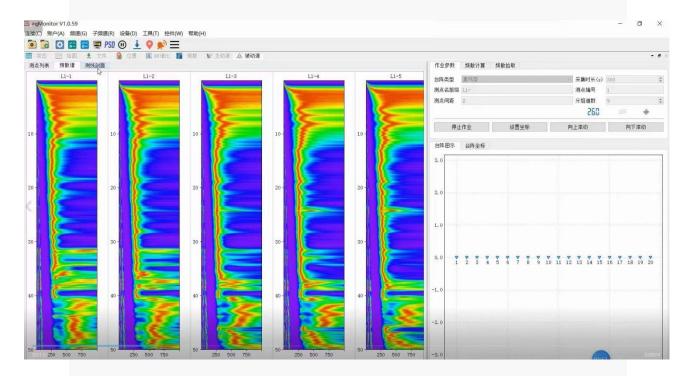
3) Электрические параметры:

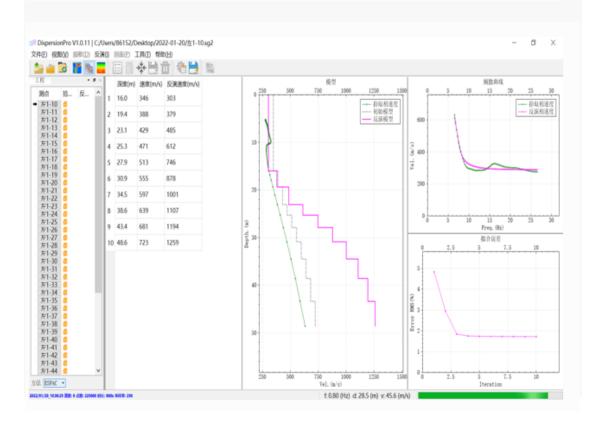
Количество каналов на станцию	3 канала
Точность синхронизации	≤1 µs
AD преобразователь	Σ-Δ 32Bit ADC
Предусиление	0dB,6dB,12dB,18dB,24dB,30dB,36dB
Частота отсчётов	4ms,2ms,1ms,0.5ms,0.25ms
Максимальный вход	5 V (peak)
Динамический диапазон	123dB (1ms интервал отсчетов, 0dB

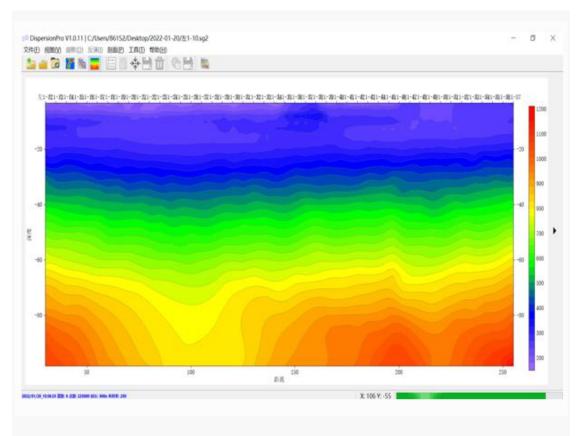

	предусиление)
Уровень шума	0.11µV RMS(1ms интервал отсчетов, 36dB
	предусиление)
Отклонение синфазного	Менее 110dB (1ms интервал отсчетов, 0dB
режима	предусиление)
Гармоническое искажение	Менее чем 122 dB (1ms интервал отсчетов,
	0dВ предусиление)
Потребляемая мощность	0.35W(4G режим цифровой передачи)
Время работы	Время работы от встроенной батареи 2530
	дней (4G режим цифровой передачи)


4) Шкаф для зарядки:

Количество каналов	6 входов(зарядка и доступ к данным
	одновременно)
Bec	5KG
Размеры	360*280*180mm
Порт передачи данных	RJ45
Зарядный ток	Максимальное значение на одни канал - 4А,
	максимальный ток на шесть каналов - 24А
Входящий ток	220V/110V AC, максимальный ток 3A,
	максимальная мощность 700W


Платформа сбора данных и управления. Мобильный терминал мониторинга в реальном времени:




Программное обеспечение для расширенной обработки и интерпретации:

Искусственный интеллект автоматически подбирает кривую дисперсии

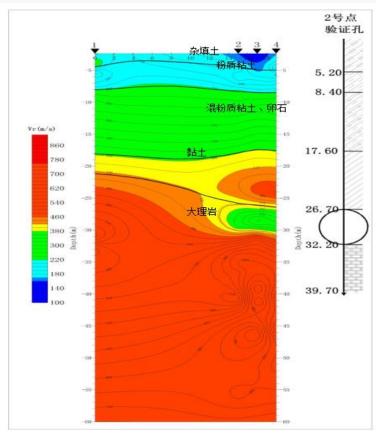
Разумная модель начальной скорости автоматически генерируется в соответствии с кривой дисперсии. Широкие настройки параметров и мощный алгоритм инверсии могут помочь пользователям быстро получить подповерхностную скоростную модель.

Предоставляется таблица состояния инверсии скорости для каждой точки измерения, а полученная скоростная модель используется для создания подземного двумерного профиля скорости одним щелчком мыши, также предоставляется функция экспорта данных.

Примеры использованих:

1: Исследование подземного карста в городе

Время проведения: Ноябрь 8, 2021


Местоположение:

Город Тонглинг, провинция Аньхой, Китай

Используемое оборудование: трехкомпонентный высоко высокочувствительный короткопериодный сейсмограф UGL-3C

Цель проекта: выяснить стратификацию горных пород и почвенного массива под фундаментом предлагаемого моста, глубину залегания поверхности коренных пород и развития карста.

Параметры работы: В этот раз используется прямолинейный массив, частота выборки 250 Гц и время сбора 10 мин.

Результаты: Как видно из рисунка выше, микросъемка отбивает литологию пластов сверху вниз в порядке На расстоянии 13~19м и глубине 26~30.5м, он показывает замкнутый контур, с аномалией низкой скорости в форме полузамкнутого круга, что интерпретируется как область развития карста.

На участке организована проверочная скважина. Как видно из рисунка выше, сейсмо-стратификация, в основном, совпадает с буровой стратификацией.

Карстовая пещера была обнаружена на глубине 26,7~32,2 м, что согласуется с прогнозом развития карста по результатам микросъемки.

2 Мониторинг гидроразрыва пласта нефти и геологических опасностей в реальном времени

Время: Октябрь.11-18, 2021

Местонахождение: Юньнань, Китай

Используемое оборудование: трехкомпонентный высоко высокочувствительный короткопериодный сейсмограф UGL-3C

Цель проекта: Мониторинг в реальном времени землетрясений. **Параметры работы:** Частота дискретизации составляет 250 Гц, внешняя солнечная панель используется для долгосрочного бесперебойного питания и сбора данных.

